Finite Volume Schemes for Nonlinear Parabolic Problems: Another Regularization Method

نویسندگان

  • R. EYMARD
  • R. HERBIN
چکیده

Abstract. On one hand, the existence of a solution to degenerate parabolic equations, without a nonlinear convection term, can be proven using the results of Alt and Luckhaus, Minty and Kolmogorov. On the other hand, the proof of uniqueness of an entropy weak solution to a nonlinear scalar hyperbolic equation, first provided by Krushkov, has been extended in two directions: Carrillo has handled the case of degenerate parabolic equations including a nonlinear convection term, whereas Di Perna has proven the uniqueness of weaker solutions, namely Young measure entropy solutions. All of these results are reviewed in the course of a convergence result for two regularizations of a degenerate parabolic problem including a nonlinear convective term. The first regularization is classicaly obtained by adding a minimal diffusion, the second one is given by a finite volume scheme on unstructured meshes. The convergence result is therefore only based on L∞(Ω × (0, T )) and L2(0, T ;H1(Ω)) estimates, associated with the uniqueness result for a weaker sense for a solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates for the finite volume discretization for the porous medium equation

In this paper we analyze the convergence of a numerical scheme for a class of degenerate parabolic problems. Such problems are often used to model reactions in porous media, and involve a nonlinear, possibly vanishing diffusion. The scheme considered here involves the Kirchhoff transformation coupled with the regularization of the nonlinearity, and is based on the Euler implicit time stepping a...

متن کامل

Discrete Duality Finite Volume Schemes for Doubly Nonlinear Degenerate Hyperbolic-parabolic Equations

We consider a class of doubly nonlinear degenerate hyperbolicparabolic equations with homogeneous Dirichlet boundary conditions, for which we first establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis of discrete duality finite volume schemes (in the spirit of Domelevo and Omnès [41]) for these problems in two and three spatial dimensions. W...

متن کامل

On discrete functional inequalities for some finite volume schemes

We prove several discrete Gagliardo-Nirenberg-Sobolev and Poincaré-Sobolev inequalities for some approximations with arbitrary boundary values on finite volume meshes. The keypoint of our approach is to use the continuous embedding of the space BV (Ω) into L (Ω) for a Lipschitz domain Ω ⊂ R , with N ≥ 2. Finally, we give several applications to discrete duality finite volume (DDFV) schemes whic...

متن کامل

On 3D DDFV Discretization of Gradient and Divergence Operators: Discrete Functional Analysis Tools and Applications to Degenerate Parabolic Problems

We present a detailed survey of discrete functional analysis tools (consistency results, Poincaré and Sobolev embedding inequalities, discreteW 1,p compactness, discrete compactness in space and in time) for the so-called Discrete Duality (DDFV) Finite Volume schemes in three space dimensions. We concentrate mainly on the 3D CeVe-DDFV scheme presented in [3]. Some of our results are new, such a...

متن کامل

ar X iv : 0 90 1 . 08 16 v 1 [ m at h . A P ] 7 J an 2 00 9 DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC - PARABOLIC EQUATIONS

We consider a class of doubly nonlinear degenerate hyperbolicparabolic equations with homogeneous Dirichlet boundary conditions, for which we first establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis of discrete duality finite volume schemes (in the spirit of Domelevo and Omnès [41]) for these problems in two and three spatial dimensions. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005